373 research outputs found

    New frontiers of Robust Design with applications to motorcycles

    Get PDF
    Most of the literature on Robust Design has so far focused on making technical performances of products and processes as much insensitive as possible to the action of noise factors, often representing physical variables. When studying the human-machine interaction, we can try to achieve system robustness to “human” noise factors in general, by considering variations in: psychological impact, body shapes and cognitive psychology in usage. These are new frontiers of Robust Design. This work started from three research lines, namely Kansei Engineering, Robust Ergonomic Design, and Human Machine interface design, the former involving cognitive and psychological aspects within product placement, the second addressing human body variation, related to driving comfort and feeling, the latter focused on understanding a robust way to approach the Human Machine interaction in usage, tuning and optimizing physical, functional and dynamical characteristics of the motorcycle, also using the results of the first two research lines: machine features from the first and rider posture from the second. A Six Sigma framework (Define, Measure, Analyse, Improve, Control - DMAIC) has been followed to better organize the flow of ideas for each field. The machine design is here figured as a process subjected to continuous improvement issue. DMAIC is just considered as a suitable framework showing how the different research purposes have been pursued during their development, as well as a research process can be approached like a production one: they both have input parameters, noise factors and final target. The aim of this work is to show how to integrate three different fields in the early concept design phases of a new motorcycle model: the machine features/strengths (engine, brakes, power, shapes, preparation) defined under the customer perspective, the ergonomic interface, both static and dynamic, and finally the relation between machine geometric features and dynamic strengths, through the user style filter

    Durable resistance to crop pathogens: an epidemiological framework to predict risk under uncertainty.

    Get PDF
    Increasing the durability of crop resistance to plant pathogens is one of the key goals of virulence management. Despite the recognition of the importance of demographic and environmental stochasticity on the dynamics of an epidemic, their effects on the evolution of the pathogen and durability of resistance has not received attention. We formulated a stochastic epidemiological model, based on the Kramer-Moyal expansion of the Master Equation, to investigate how random fluctuations affect the dynamics of an epidemic and how these effects feed through to the evolution of the pathogen and durability of resistance. We focused on two hypotheses: firstly, a previous deterministic model has suggested that the effect of cropping ratio (the proportion of land area occupied by the resistant crop) on the durability of crop resistance is negligible. Increasing the cropping ratio increases the area of uninfected host, but the resistance is more rapidly broken; these two effects counteract each other. We tested the hypothesis that similar counteracting effects would occur when we take account of demographic stochasticity, but found that the durability does depend on the cropping ratio. Secondly, we tested whether a superimposed external source of stochasticity (for example due to environmental variation or to intermittent fungicide application) interacts with the intrinsic demographic fluctuations and how such interaction affects the durability of resistance. We show that in the pathosystem considered here, in general large stochastic fluctuations in epidemics enhance extinction of the pathogen. This is more likely to occur at large cropping ratios and for particular frequencies of the periodic external perturbation (stochastic resonance). The results suggest possible disease control practises by exploiting the natural sources of stochasticity.GL is funded by the ESPA award “Dynamic Drivers of Disease in Africa Consortium”. The work of FvdB is supported by Rothamsted Research, who receives grant aided assistance from the Biological and Biotechnological Research Council of the United Kingdom. CAG gratefully acknowledges the support of a BBSRC Professorial Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pcbi.100287

    New methodologies for the estimation of population vulnerability to diseases: a case study of Lassa fever and Ebola in Nigeria and Sierra Leone.

    Get PDF
    Public health practitioners require measures to evaluate how vulnerable populations are to diseases, especially for zoonoses (i.e. diseases transmitted from animals to humans) given their pandemic potential. These measures would be valuable to support strategic and operational decision making and allocation of resources. Although vulnerability is well defined for natural hazards, for public health threats the concept remains undetermined. Here, we develop new methodologies to: (i) quantify the impact of zoonotic diseases and the capacity of countries to cope with these diseases, and (ii) combine these two measures (impact and capacity) into one overall vulnerability indicator. The adaptive capacity is calculated from estimations of disease mortality, although the method can be adapted for diseases with no or low mortality but high morbidity. As an example, we focused on the vulnerability of Nigeria and Sierra Leone to Lassa Fever and Ebola. We develop a simple analytical form that can be used to estimate vulnerability scores for different spatial units of interest, e.g. countries or regions. We show how some populations can be highly vulnerable despite low impact threats. We finally outline future research to more comprehensively inform vulnerability with the incorporation of relevant factors depicting local heterogeneities (e.g. bio-physical and socio-economic factors). This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'. This theme issue is linked with the earlier issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'.FRSF Pump Prime Gran

    Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa

    Get PDF
    Understanding the emergence and subsequent spread of human infectious diseases is a critical global challenge, especially for high-impact zoonotic and vector-borne diseases. Global climate and land-use change are likely to alter host and vector distributions, but understanding the impact of these changes on the burden of infectious diseases is difficult. Here, we use a Bayesian spatial model to investigate environmental drivers of one of the most important diseases in Africa, Rift Valley fever (RVF). The model uses a hierarchical approach to determine how environmental drivers vary both spatially and seasonally, and incorporates the effects of key climatic oscillations, to produce a continental risk map of RVF in livestock (as a proxy for human RVF risk). We find RVF risk has a distinct seasonal spatial pattern influenced by climatic variation, with the majority of cases occurring in South Africa and Kenya in the first half of an El Niño year. Irrigation, rainfall and human population density were the main drivers of RVF cases, independent of seasonal, climatic or spatial variation. By accounting more subtly for the patterns in RVF data, we better determine the importance of underlying environmental drivers, and also make space- and time-sensitive predictions to better direct future surveillance resources

    Numerical and experimental comparison between two different blade configurations of a wind generator

    Get PDF
    This paper presents a comparison between the structural behaviour of a wind generator with straight blades and a composite prototype of a wind generator with helical blades. Numerical structural analyses are performed by means of FEM models by using ANSYS MechanicalTM software package. Furthermore, laboratory dynamic experimental tests are carried out on real scale specimens of the two wind generator configurations in order to find their modal properties in terms of natural frequencies and modal shapes. The results of the experimental campaign are then used to update the numerical models by minimizing an objective function. Total stresses and deformations of the two wind generator configurations, coming from the updated numerical models, are evaluated and compared to quantitatively point out the improvement of the structural behaviour obtained by the use of composite materials

    Households as hotspots of Lassa fever? Assessing the spatial distribution of Lassa virus-infected rodents in rural villages of Guinea

    Get PDF
    The Natal multimammate mouse (Mastomys natalensis) is the reservoir host of Lassa virus (LASV), an arenavirus that causes Lassa haemorrhagic fever in humans in West Africa. While previous studies suggest that spillover risk is focal within rural villages due to the spatial behaviour of the rodents, the level of clustering was never specifically assessed. Nevertheless, detailed information on the spatial distribution of infected rodents would be highly valuable to optimize LASV-control campaigns, which are limited to rodent control or interrupting human–rodent contact considering that a human vaccine is not available. Here, we analysed data from a four-year field experiment to investigate whether LASV-infected rodents cluster in households in six rural villages in Guinea. Our analyses were based on the infection status (antibody or PCR) and geolocation of rodents (n = 864), and complemented with a phylogenetic analysis of LASV sequences (n = 119). We observed that the majority of infected rodents were trapped in a few houses (20%) and most houses were rodent-free at a specific point in time (60%). We also found that LASV strains circulating in a specific village were polyphyletic with respect to neighbouring villages, although most strains grouped together at the sub-village level and persisted over time. In conclusion, our results suggest that: (i) LASV spillover risk is heterogeneously distributed within villages in Guinea; (ii) viral elimination in one particular village is unlikely if rodents are not controlled in neighbouring villages. Such spatial information should be incorporated into eco-epidemiological models that assess the cost-efficiency of LASV control strategies

    Where are the horses? With the sheep or cows? Uncertain host location, vector-feeding preferences and the risk of African horse sickness transmission in Great Britain

    Get PDF
    Understanding the influence of non-susceptible hosts on vector-borne disease transmission is an important epidemiological problem. However, investigation of its impact can be complicated by uncertainty in the location of the hosts. Estimating the risk of transmission of African horse sickness (AHS) in Great Britain (GB), a virus transmitted by Culicoides biting midges, provides an insightful example because: (i) the patterns of risk are expected to be influenced by the presence of non-susceptible vertebrate hosts (cattle and sheep) and (ii) incomplete information on the spatial distribution of horses is available because the GB National Equine Database records owner, rather than horse, locations. Here, we combine land-use data with available horse owner distributions and, using a Bayesian approach, infer a realistic distribution for the location of horses. We estimate the risk of an outbreak of AHS in GB, using the basic reproduction number (R0), and demonstrate that mapping owner addresses as a proxy for horse location significantly underestimates the risk. We clarify the role of non-susceptible vertebrate hosts by showing that the risk of disease in the presence of many hosts (susceptible and non-susceptible) can be ultimately reduced to two fundamental factors: first, the abundance of vectors and how this depends on host density, and, second, the differential feeding preference of vectors among animal species

    Can insecticide-treated netting provide protection for Equids from Culicoides biting midges in the United Kingdom?

    Get PDF
    BACKGROUND: Biting midges of the genus Culicoides Latreille, 1809 (Diptera: Ceratopogonidae) cause a significant biting nuisance to equines and are responsible for the biological transmission of African horse sickness virus (AHSV). While currently restricted in distribution to sub-Saharan Africa, AHSV has a history of emergence into southern Europe and causes one of the most lethal diseases of horses and other species of Equidae. In the event of an outbreak of AHSV, the use of insecticide treated nets (ITNs) to screen equine accomodation is recommended by competent authorities including the Office International des Épizooties (OIE) in order to reduce vector-host contact. METHODS: Seven commercially avaliable pyrethroid insecticides and three repellent compounds, all of which are licensed for amateur use, were assessed in modified World Health Organization (WHO) cone bioassay trials in the laboratory using a colony line of Culicoides nubeculosus (Meigen), 1830. Two field trials were subsequently conducted to test the efficiency of treated net screens in preventing entry of Culicoides. RESULTS: A formulation of cypermethrin (0.15 % w/w) and pyrethrins (0.2 % w/w) (Tri-Tec 14®, LS Sales (Farnham) Ltd, Bloxham, UK) applied to black polyvinyl-coated polyester insect screen (1.6 mm aperture; 1.6 mm thickness) inflicted 100 % mortality on batches of C. nubeculosus following a three minute exposure in the WHO cone bioassays at 1, 7 and 14 days post-treatment. Tri-Tec 14® outperformed all other treatments tested and was subsequently selected for use in field trials. The first trial demonstrated that treated screens placed around an ultraviolet light-suction trap entirely prevented Culicoides being collected, despite their collection in identical traps with untreated screening or no screening. The second field trial examined entry of Culicoides into stables containing horses and found that while the insecticide treated screens reduced entry substantially, there was still a small risk of exposure to biting. CONCLUSIONS: Screened stables can be utilised as part of an integrated control program in the event of an AHSV outbreak in order to reduce vector-host contact and may also be applicable to protection of horses from Culicoides during transport.The work of LEH and GLI was supported by funding from the Horserace Betting Levy Board (HBLB) (Vet/PRJ/766); TR was supported by funding from the University of Surrey; and JW was supported by the Alborada Trust and by the European Union FP7 project ANTIGONE (contract number 278976). RN is supported through a combined contribution to the Animal Health Trust’s Equine Infectious Disease Service from the HBLB, the Racehorse Owners’ Association (ROA) and the Thoroughbred Breeders’ Association (TBA). The Pirbright Institute receives grant aided support from the Biotechnology and Biological Sciences Research Council of the United Kingdom.This is the final version of the article. It was first available from BioMed Central via http://dx.doi.org/10.1186/s13071-015-1182-

    Environmental limits of Rift Valley fever revealed using ecoepidemiological mechanistic models.

    Get PDF
    Vector-borne diseases (VBDs) of humans and domestic animals are a significant component of the global burden of disease and a key driver of poverty. The transmission cycles of VBDs are often strongly mediated by the ecological requirements of the vectors, resulting in complex transmission dynamics, including intermittent epidemics and an unclear link between environmental conditions and disease persistence. An important broader concern is the extent to which theoretical models are reliable at forecasting VBDs; infection dynamics can be complex, and the resulting systems are highly unstable. Here, we examine these problems in detail using a case study of Rift Valley fever (RVF), a high-burden disease endemic to Africa. We develop an ecoepidemiological, compartmental, mathematical model coupled to the dynamics of ambient temperature and water availability and apply it to a realistic setting using empirical environmental data from Kenya. Importantly, we identify the range of seasonally varying ambient temperatures and water-body availability that leads to either the extinction of mosquito populations and/or RVF (nonpersistent regimens) or the establishment of long-term mosquito populations and consequently, the endemicity of the RVF infection (persistent regimens). Instabilities arise when the range of the environmental variables overlaps with the threshold of persistence. The model captures the intermittent nature of RVF occurrence, which is explained as low-level circulation under the threshold of detection, with intermittent emergence sometimes after long periods. Using the approach developed here opens up the ability to improve predictions of the emergence and behaviors of epidemics of many other important VBDs.The work was partially supported by the National Institute for Health Research (NIHR) Health Protection Research Unit in Environmental Change and Health at the London School of Hygiene and Tropical Medicine in partnership with Public Health England (PHE) and in collaboration with the University of Exeter, University College London, and the Met Office. European Union FP7 Project ANTIGONE (Contract 278976). Royal Society Wolfson Research Merit Award. The Alborada Trust

    Use of penile shear wave elastosonography for the diagnosis of Peyronie's Disease: a prospective case-control study

    Get PDF
    Background: To evaluate the stiffness of the tunica albuginea (TA), we used a new noninvasive diagnostic technique called shear wave elastography (SWE). We determined whether SWE values are correlated with the degree of penile curvature, the time of disease onset, and pain severity experienced by patients during erection. This study analyzed the elasticity of the TA of patients with Peyronie's disease compared to that of the control group. We also analyzed any correlations between the stiffness of the cavernous bodies and the degree of curvature, time from diagnosis to curvature onset, and erectile pain severity. This was a prospective case-control study involving 100 men enrolled from September 2020 to August 2021. Participants were divided into group A (case group, n = 50), which included men with PD, with or without pain, and with penile curvature, or group B (control group, n = 50), which included healthy patients older than 18 years who visited the urology clinic for reasons other than PD. The medical history was collected for all patients who also underwent objective examination, B-mode ultrasound evaluation, and SWE. The International Index of Erectile Function (IIEF-15) visual analog scale (VAS) questionnaire was administered to all participants. Results: There were no significant between-group differences regarding age, weight, and height (p > 0.05); however, there was a significant difference in the stiffness values (p < 0.05). An inverse correlation was observed between stiffness and the VAS score (p < 0.0001). A positive correlation was observed between the degree of curvature (p < 0.0001) and the time of curvature onset (p < 0.0001). The IIEF-15 scores were poorer in group A than in group B (p < 0.0001). Conclusion: SWE is an inexpensive, noninvasive method that can be used to measure the stiffness of PD patients
    • …
    corecore